THINKING ABOUT EXPERIENCE AND ACTION

Richard Jung

University of Alberta and Center for Systems Research

In Festschrift for Felix Geyer
to be published 2004 in Kybernetes
Manuscript submitted 1.5.2004

1 INTRODUCTION

Most of the profound literature concerning the problem of the unity and diversity of knowledge is, from ancient Indian and Greek philosophy on, preoccupied with ontology. To become even superficially familiar with it is to be awed by the complexity of the various issues. This text is, however, merely concerned with the questions of the epistemology and methodology of human studies that have been explicitly and systematically discussed primarily in Germany at the turn of the 19th and 20th Centuries. Those debates are now remembered as der Methodenstreit. Even though I shall also refer or allude to issues and concepts made famous in the context of ontology by earlier as well as later writers, I do not here advance any claims or make any assertions about how things really are, but only meditate about how they could be thought about and studied.

1.1 PERSONAL

In the beginning was action. That to be is to act became obvious to me during World War II. To think about it I started first in 1946, when exposed at the law faculty of Charles University to the Teleology of English. Experience became a topic for thought in 1947, when studying and practicing mystical religion at the Woodbrooke Quaker Study Centre in the UK and at the Ramakrishna Mission in Paris. The Communist Coup in Prague in 1948 wrenched me back into the realm of action once again.

Later, like Felix Geyer and a few other sociologists and psychologists of our generation who were influenced by the then new ideas of general systems theory and cybernetics, I spent years thinking about how to conceive of experience and action from these perspectives.

I feel that I should not pass up the privilege to review my own approach in a Festschrift dedicated to Professor Geyer. I shall sketch the main points or nodes of
the development of my effort, drawing on and referring to material I have pre-viously published and also to material on my web site\(^6\).

2 EXPERIENCE AND ACTION

The basic structure of my thoughts on this topic I set down in 1965 as “Outline of cybernetic phenomenology” in a background document for the Program in Social Systems Analysis I directed at the time at Cornell University.

The earliest conceptions of experience and action I have presented at various occasions\(^7\). It was first published as “Systems of Orientation\(^8\)” in the context of a project at IBM for the development of the third generation of computers. Later I reverted to using an earlier name -- Special Theory of Orientation -- and generalized the approach to other special theories\(^9\) and a general theory of action. Over the years I have been expanding and slightly revising the original formulation.

2.1 ECHOES OF DESCARTES AND SPINOZA

Things are concrete entities of our perception. Labeled, located and dated, they become inventories and representations in choro- and chronography. Systems are formal entities of the mind and culture. Although all the information about a system is specified by an \(n\)-ary relation (a set of relations on a set of variables), one may focus attention on the more explicit representations of a system, such as its field, space, state, process, structure, or development.\(^10\) In natural language and thought, as well as in scholarship and science, we postulate connections between things and systems by implicitly or explicitly employing correspondence rules between terms and transfer procedures between assertions.\(^11\) Abstract conceptual schemes mediate the mental and linguistic operations involved.

Things (interpreted as patterns of data or capta) can be treated as corresponding to systems. They can be embedded within a space, endowed with boundaries, having a center (a focal point or a focal region) defined by some method of denotation and a trajectory describing the locus of changes of this center. Their development can be represented as changes of their boundaries.

A thing embedded in a physical space-time is analyzed as a res movens. Its boundaries as an object are determined by its extension. A center of objectivity is denoted. The locus of translations of the center of objectivity is a trajectory called the world line of the object. The development of the object involving its rotations and the deformations of its boundaries is represented as a swath of form within indefiniteness. Objects can be conceptualized employing the metaphor\(^12\) ‘organism’, or the metaphor ‘machine’. If conceptualized as ‘organisms’, their activity is interpreted as behavior, if as ‘machines’ then it is interpreted as performance. This text is not concerned with objects.

A thing embedded in a semantic space-time is analyzed as a res agens. Its boundaries as a subject are determined by its intension. A center of subjectivity is
denoted. The center of subjectivity may be conceptualized as an *eidolon* (a phan-
tom, a ghost, an apparition). The locus of translations of the center of subjectivity is
a trajectory called the life history of the subject. The development of the subject in-
volving its rotations and the deformations of its boundaries is represented as a
swath of meaning within indefiniteness. Subjects (eidola), as well as their activity
and development, can be further differently conceptualized employing either the
metaphor ‘template’ or the metaphor ‘mind’.

Under the metaphor ‘template’ subjects are conceptualized as systems of
conventions. Their center of subjectivity is conceived as being a *Xenos* (a stranger,
a visitor, an Other). The activity of the system is seen as its conduct.\(^\text{13}\) Under the
metaphor ‘mind’ subjects are conceptualized as systems of intentions. Their center
of subjectivity is conceived as being an *Idios* (an ‘I’, a Self). The activity of the sys-
tem is seen as its action. Most of psychology, economics and sociology has been and
is a discussion or study of the conduct or action of subjects.

This text is limited to systems of intentions, Selves and the relations between
the Selves (noetic poles of experience) and their Worlds (noematic poles of experi-
ence\(^\text{14}\)) as actions in semantic space.

3 A UNIFIED THEORY OF ACTION

I have attempted to construct a Unified Theory of Action by using an approach I call
Phenomenological Systems Analysis. Phenomenology is used as a method of con-
ceptualization, while systems analysis (not in the loose senses used by the “social
systems analysts” and the “general systems analysts”, but in the more formalized
sense used by computer scientists and engineers) is used as a method of explana-
tion.

The Unified Theory of Action consists of three General Theories. Each is
concerned with a different fundamental problem, employs a different method for its
solution, has its own special concepts and invokes different systems of explanation.
The three General Theories are, however, *unified by a common Conceptual Space,
by methods of Structuring of Action and of Aggregation of Action*\(^\text{15}\).

One fundamental problem (currently the primary concern of psychologists,
micro-economists and automata theorists) is the action of individuals. I call the
method employed for its solution Cybernetic Phenomenology. The explanatory sys-
tem invoked is the logic of functional analysis (in the sense used in modern physics)
and its elaborations in the calculus of variations and the various models of cybernet-
ics. The proposed solution is a *General Theory of Action*.

Another fundamental problem is the action of groups. Groups are aggregate
systems with all individuals and relations of interest identified. The subject is cur-
rently dealt with primarily in social psychology and the theories of the firm, of cor-
porations and of games. The method I suggest for its solution I call Structural Phe-
nomenology. The explanatory system invoked is primarily derived from set theory
and its various extensions, such as graph theory, lattice theory and matrix algebra.
The proposed solution is a *General Theory of Interaction*.

Page 3 of 16
A third fundamental problem is the action of collectives. Collectives are aggregate systems where all individuals and/or interactions cannot be meaningfully identified, either because of the number of elements and relations, or because of the heterogeneity that is of interest. The method I have proposed for its solution I call Stochastic Phenomenology. The explanatory system invoked is probability theory. Since this is a domain of inquiry largely abandoned by the present generation of sociologists, the models available are to be found primarily in macro-economics, population genetics and epidemiology. The proposed solution is a General Theory of Transaction.

3.1 A GENERAL THEORY OF ACTION

Of the three general theories, only the General Theory of Action shall be briefly described here. It attempts to explain systems of actions cybernetically, taking into account the dynamic relations between an actor and a situation.

3.1.1 Phenomenology

The identical element — an organism or a machine — may be equally appropriately analyzed either as a physiological system through the application of concepts and principles of physics, chemistry and biology, or as a psychological system through the application of concepts and principles of the social sciences. Its complement, i.e., its environment, may be similarly analyzed, either as an ecological system, or as a system of situations. The fundamental difference between the two modes of analysis is whether the phenomena under study are conceived of as systems of energy, or as systems of meaning. From the point of view presented here, decisions as to how systems are defined, interpreted and analyzed are not ontological, but epistemological.

Since my interest here is in the meaning of action and not in the thermodynamics of behavior, I am led to a commitment to phenomenology as the method of conceptualization. The terms actor, action and situation will, therefore, indicate that individuals, their environments and their activity in these environments have been conceptualized phenomenologically.

3.1.2 Cybernetics

The same fundamental abstractions (actor, action and situation) imply a commitment to a particular mode of explanation with a long, illustrious and troubled tradition in philosophy, psychology and the social sciences. It is a mode of explanation, which is focused on the appearance of regulation (or the lack of regulation) of action. Within this tradition, actions are simply those exchanges between individuals and their environments that are actually or hypothetically regulated. Actors (or situations) are those aspects of individuals (or environments) that are analyzed as sources of regulation or disturbance.
3.1.3 Cybernetic phenomenology

Actors, situations and actions are terms for individuals, environments and exchanges between them that have been conceptualized as systems of meanings (i.e., phenomenologically) and explained as systems of regulations (i.e., cybernetically). This conception of action is compatible with Parsons’ classical definitions, which summarize the humanistic tradition of analysis:\(^8\):

Action is (1) “the relation between actor and situation” and (2) “the distribution of energy ... subject to specific constraints”.

The attempt to construct a General Theory of Action draws on the classical tradition of action analysis wherever possible. However, having made explicit the basic intent of conceptualization, i.e., the abstraction of the meaning of action, it accepts phenomenology as the only method of conceptualization appropriate in the construction of the theory. In the same way, it adheres to the idea of constraints as the sole source of explanation and refuses to introduce any additional, incompatible and empirically untenable explanatory ideas still prevalent in quasi-evolutionary explanations and engraved in Parsons’ original definition of action, i.e., “Actor seeks goals in situations”.

Thus, the analysis radicalizes conceptualization of action by accepting phenomenology as its sole method. At the same time, it rejects pre-scientific, introspective and romantic functionalism with its teleological fallacy as a method of explanation of action. Instead, it simply substitutes what is called functional analysis in physics. This is a step from the logical structure of Hero’s explanation of the behavior of light rays as prescient and purposive\(^9\), to the logical structure of modern theories, e.g., quantum, electromagnetic, relativity and game theories.

3.1.4 Functional explanation

Functional explanation specifies the relations between three sets of variables. Given a set of boundary conditions (values of a set of independent variables), the behavior of a functional system (a system of intervening variables) is so constrained that the value of an essential (dependent) variable is extremum. Extremum is a general term for either maximum or minimum values in a range, or for constants. While the concept “extremum” permits on the one band further formal elaboration, it imposes on the other hand a rigorous methodological restriction.

The recipe for a meaningful functional analysis is: First, define or determine an essential variable, the value of which in fact remains constant or at a maximum or a minimum possible value. Next, identify the necessary and sufficient set of variables that maintain the essential variable at extremum. Third, determine (through naturalistic observation or by violation through laboratory experimentation) the necessary and sufficient set of boundary conditions under which the system occurs and without which it vanishes.

Functional analysis is the foundation stone of cybernetics, which combines functional chains through loops and analyzes interaction between various sources of disturbance (variance).
3.1.5 The fundamental problem and its solution

The General Theory of Action conceptualizes activity of individuals in environments phenomenologically as actions constrained by systems of meanings. It constructs actors and situations as the sources of meanings. It explains action cybernetically as the mutual disturbance and regulation by an actor and a situation.

Thus conceived, the fundamental problem of the General Theory of Action becomes: How do an actor and a situation regulate action?

To solve the problem, the theory provides in essence: (1) A conceptualization of boundary conditions that act as sources of disturbance; (2) A specification of systems of intervening variables, by formulating various processes into which ongoing action can be meaningfully analyzed; and (3) A set of essential variables and their propensities to assume extremum values that regulate — which also means that explain — the various processes.

3.2 Three Special Theories of Action

The General Theory of Action posits that separate conceptualization and analysis of three special processes is necessary and sufficient for a complete analysis of action. Each of the three processes expresses a different fundamental propensity of action. While embedded in the common conceptual and explanatory format of the General Theory, the analysis of each process requires also special concepts, mechanisms and principles. Thus, the three Special Theories of Action accomplish the actual analysis of action. The General Theory provides the concepts, mechanisms and principles necessary for the description and explanation of the interplay of three special processes. It, thus, becomes the theory of integration or disintegration of action.

The three Special Theories are: (1) A Special Theory of Orientation; (2) A Special Theory of Motivation; and (3) A Special Theory of Decision. Each theory employs quite different explanatory structures. The theory of orientation employs a format derived from information theory, the theory of motivation a format derived from the theory of elasticity and the theory of decision a format derived from the economic theory of decisions under risk. Each theory postulates a different principle regulating (i.e., explaining) the relevant process. The form of the principle is the same in all three Special theories and also in the General Theory. Its content differs with each theory.

Each explanatory principle consists of (1) the specification of the kind of extremum that is maintained (form) and (2) the identification of the essential variable of each process (content). The form of the principles derives from the logic of functional explanation described above: The value of an essential variable E is maintained at an extremum by a system of intervening variables only under a given set of boundary conditions. The extremum maintained in each case is of the form — reduction of the maximum possible amount of e — e being the value of the relevant essential variable E.
The essential variables of the three processes of orientation, motivation and decision express the fundamental propensities of action, i.e., to manage, respectively, uncertainty, tension and risk. The special principles of action are: for the process of orientation, the reduction of the maximum possible amount of uncertainty; for the process of motivation, the reduction of the maximum possible amount of tension; and for the process of decision, the reduction of the maximum possible amount of risk.

3.2.1 Integration and disintegration of action

Each of three Special Theories of Action describes an analytically distinguishable process of action, expresses a different fundamental propensity of action and postulates a special principle regulating action. Yet all three processes are not only sufficient, but also necessary to regulate (i.e., to explain) action. This represents a radical departure from prevalent monistic thinking. Furthermore, the processes are postulated to be empirically independent within systemic limits — thus, the processes are as likely to be mutually antagonistic as they are to be mutually irrelevant or solidary.

Life and meaning does not exist, nor does it cease, due to the realization, or lack of realization, of its propensities. Rather it exists where the system is able to cope and ceases when it is not able to cope with disturbances that push the processes of action beyond systemic limits. “The vital balance,” as Menninger has called it, is an important characteristic of life and one of the topics of the General Theory of Action. Yet it is a vital imbalance that temporarily gives rise to phenomena called life and meaning.

3.2.2 A general principle of action

Having delegated most of the task of explaining regulation of action to the three Special Theories, the problem par excellence for the General Theory of Action becomes: What process and principle governs the interplay of the three special processes? Or, stated differently, under what conditions does action (i.e., activity constrained by meaning) occur — and under what conditions chaotic, meaningless activity?

The salient feature of the proposed solution is: The interplay of the three special processes is seen as a general process, which manifests a propensity toward authenticity. Stated in the format explained earlier, the General Theory explains action as governed by a general principle of the maximum possible reduction of inauthenticity.

The term authenticity is likely to be correctly understood in its dictionary meaning and its use in existential philosophy. The principle governs the interplay of the three processes by generating experiences such as guilt, shame and anxiety when inauthenticity is increased and by either reducing these experiences or generating their opposites, if it is decreased. Formally speaking, experiences such as guilt are generated when special processes of action (or their sub-processes) act mutually
antagonistically. When the general principle operates properly, systemic limits are actually experienced.

Another way of stating the general principle of action is as a categorical imperative: Above all, action must reduce as much as possible any discrepancy between the definition of an actor and its actual state. Clearly, there are two ways of reducing such discrepancy. One may change one’s state as an actor to correspond to one’s definition, or one may change one’s definition to correspond to one’s state. The difference between the two ways is partly illustrated by the distinction between some mechanisms of adjustment, such as learning and mechanisms of defense. Among the results of the process of orientation is precisely the continuing generation, evaluation and acceptance or rejection of the two constructs — one’s state and one’s definition as an actor.

3.3 Theory of Orientation and Semantic Space-Time

The special theory of orientation consists of various operators that act on the transforms of previous operations. The processes of transformation constitute the various sub-systems and systems of the theory and define the semantic space-time and the key elements of action.

Pandemic operators come into play with the engagement of two systems that produces formation and deformation of their joint boundary and thereby the experience of a field; initially a hazy manifold, which by additional operations is first defined as inventory, then as a local space-time with a chorography and chronography.

Endemic operators acting on the vectors in the space-time select relations on some of these as available statements, thus creating a semantic space. Combinations of analytic, synthetic, particular and universal statements constitute different simple systems of discourse. Correspondence rules and transfer procedures acting on the variables and values of the simple systems constitute combined systems of discourse. Application of an objectifying and/or subjectifying operation partitions all the system of discourse into epistemic and telic systems, and the semantic space-time into possibility and relevance space-times.

The subjectifying operation specifies within telic systems a focal region (which constitutes the internal and the external definition of the subject), a situation and functional relations between the subject and the situation. Terms are transferred into herms (units of relevance) and transfer procedures of intelligibility into transfer procedures of warrantability. The interpretation of the subject depends on the metaphor chosen. Under the metaphor ‘mind’ the subject is interpreted as a Self, with Anima as the Self’s internal and Persona as the Self’s external image.

Some endemic operations and their transforms are summarized in Tables 1(a,b,c) and 2(a,b,c). These tables represent the categories of semantic space-time.
Table 1a. Epistemic Systems of Discourse: Simple Systems.

<table>
<thead>
<tr>
<th>SYSTEM NAME</th>
<th>VARIABLES</th>
<th>THEIR VALUES TERMS</th>
<th>RELATIONS RULES OF INTELLIGIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Macro-Operator Observer / Participator</td>
<td>Event Captum / Datum</td>
<td>Pattern (N-tuple)</td>
</tr>
<tr>
<td>Conceptual</td>
<td>Variable</td>
<td>Class</td>
<td>Proposition (Relationship)</td>
</tr>
<tr>
<td>Symbolic</td>
<td>Order symbol (Locus)</td>
<td>Place symbol (Situs)</td>
<td>Formula (Function)</td>
</tr>
</tbody>
</table>

Table 1b. Epistemic Systems of Discourse: Combination Operations.

<table>
<thead>
<tr>
<th>SYSTEM X&Y</th>
<th>COMBINED SYSTEM NAME</th>
<th>CORRESPONDENCE RULE</th>
<th>TRANSFER PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 & 1</td>
<td>Methodological</td>
<td>$V_x \leftarrow V_y$</td>
<td>$\mathcal{R}_x \leftarrow \mathcal{R}_y$</td>
</tr>
<tr>
<td></td>
<td>as indicator</td>
<td>Operational definition</td>
<td>Experiment</td>
</tr>
<tr>
<td>2 & 3</td>
<td>Theoretical</td>
<td>$V_x \rightarrow V_y$</td>
<td>$\mathcal{R}_x \Rightarrow \mathcal{R}_y$</td>
</tr>
<tr>
<td></td>
<td>Semantic interpretation</td>
<td>Lexical definition</td>
<td>Deductive inference</td>
</tr>
<tr>
<td>1 & 3</td>
<td>Representational</td>
<td>Representation</td>
<td>Symbolization</td>
</tr>
<tr>
<td></td>
<td>Instrument</td>
<td>Artifact</td>
<td>Model</td>
</tr>
</tbody>
</table>

Table 1c. Epistemic Systems of Discourse: Combined Systems.

<table>
<thead>
<tr>
<th>SYSTEM NAME</th>
<th>VARIABLES</th>
<th>THEIR VALUES TERMS</th>
<th>RELATIONS RULES OF INTELLIGIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 & 1</td>
<td>Methodological</td>
<td>Index</td>
<td>Fact</td>
</tr>
<tr>
<td>2 & 3</td>
<td>Theoretical</td>
<td>Scale</td>
<td>Construct</td>
</tr>
<tr>
<td>1 & 3</td>
<td>Representational</td>
<td>Instrument</td>
<td>Artifact</td>
</tr>
</tbody>
</table>
Table 2a. Telic Systems of Discourse: Simple Systems.

<table>
<thead>
<tr>
<th>SYSTEM NAME</th>
<th>SUBJECTIFYING OPERATION</th>
<th>CRITICAL VALUES</th>
<th>FOCAL REGION Definition of subject (Self)</th>
<th>FUNCTIONAL RELATIONS RULES OF WARRANTABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aesthetic</td>
<td>Separation</td>
<td>Threshold Existence</td>
<td>Consumer Arousal (Emotion)</td>
</tr>
<tr>
<td>2</td>
<td>Moral</td>
<td>Commitment</td>
<td>Standard Identity</td>
<td>Role Rule of action</td>
</tr>
<tr>
<td>3</td>
<td>Axiological</td>
<td>Individuation</td>
<td>Value Essence</td>
<td>Sva-dharma Rule of importance</td>
</tr>
</tbody>
</table>

Table 2b. Telic Systems of Discourse: Combination Operations.

<table>
<thead>
<tr>
<th>SYSTEM X&Y</th>
<th>COMBINED SYSTEM NAME</th>
<th>CORRESPONDENCE RULE $V_x \leftrightarrow V_y$</th>
<th>TRANSFER PROCEDURE Rule $V_x \Rightarrow V_y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 & 1</td>
<td>Pragmatic</td>
<td>Interpretation as sanction</td>
<td>Cathectic</td>
</tr>
<tr>
<td>2 & 3</td>
<td>Ethical</td>
<td>Interpretation as duty / as responsibility</td>
<td>Identification / Loyalty</td>
</tr>
<tr>
<td>1 & 3</td>
<td>Expressive</td>
<td>Representation</td>
<td>Symbolization</td>
</tr>
</tbody>
</table>

Table 2c. Telic Systems of Discourse: Combined Systems.

<table>
<thead>
<tr>
<th>SYSTEM No.</th>
<th>SUBJECTIFYING OPERATION</th>
<th>CRITICAL VALUES</th>
<th>FOCAL REGION Definition of subject (Self)</th>
<th>FUNCTIONAL RELATIONS RULES OF WARRANTABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 & 1</td>
<td>Pragmatic</td>
<td>Engagement</td>
<td>Constraint Regulator Producer</td>
<td>Prudential rule</td>
</tr>
<tr>
<td>2 & 3</td>
<td>Ethical</td>
<td>Calling / Appointment</td>
<td>Norm Mission Office Categorical rule</td>
<td></td>
</tr>
<tr>
<td>1 & 3</td>
<td>Expressive</td>
<td>Posture</td>
<td>Stigma Image Status Ritual</td>
<td></td>
</tr>
</tbody>
</table>

Epidemic operators (so called since many originate and disseminate in the situation and are often internalized or institutionalized) initiate the processes of validation or judgment. Available statements are accepted or rejected, depending to a large extent on the gradients and levels of uncertainty associated with them. Accepted statements are transformed into utterances. They become actions when operators from the two other special theories -- of motivation and decision -- are added.
4 SYSTEM AND SIGNIFICANCE

To try to systematize what I was able to absorb from epistemology as well as from biology, psychology and the social sciences, I engaged in a project I call System and Significance. A part of the project is an attempt to interpret the development of Indo-European metaphysics as The Quest for a General System. As the most recent stage in this quest I explore Postmodern Systems Theory. The present discussion is within this format. I also avail myself of the results of general methodological considerations about the Foundations of Systems Analysis. In an effort to systematically conceptualize the semantic space-time in which conduct or action is said to occur and to bring some elements of explanation into the perennial discussion, I have attempted to develop a method I call Cybernetic Phenomenology. On the basis of this analysis I have formulated a framework for a systems theory of Experience and Action.

4.1 THE CYBERNETICS OF EXPERIENCE

The conception of experience and action presented so far assumes continuing changes in the states and often in the structure of the key constituents of experience and action. At least some of the postmodern system theoretic ideas invoked need to be mentioned here.

Systems are seen as inherently dynamic and temporal. Their most significant structural characteristic is their historicity, referring not only to a system’s past, but to its future as well. Synchronicity cannot be established for any set of events neither at nor outside the boundary of a system. The analysis of temporal structure of a system occurs in terms of the diachronicity of influences in physical or in semantic time. In functional analysis, references to future and past states in physical space-time are explicit. In analyses of action in semantic spacetime, references to anticipations and recollections are indispensable.

Boundary of a system is a locus of points that are neither inside nor outside the system. The boundary of system thus distinguishes between its outside and its inside, i.e., between its outer and inner environment. From this point of view, all the information about the system is at its boundary. The boundary is autopoietic, i.e., the system defines and redefines its own boundary. It is incessantly deformed (due to external and internal forces /loads, strain/ and restoring forces at the boundary /stress/) It has a changing coefficient of elasticity and is to a variable degree self-equilibrating. It maintains optimal form. Yet it is fuzzy and permeable.

Experience is a deformation of the boundary. Both the Self and the World are distributed at the boundary. The boundary distinguishes between the experiences of the indexical I and the indexical It. The hull of the system is the experiential I or the Self. The shell of the system is the experiential It, the World or the Other. In their transformations, the Self and the World are symbiotic and parasitic on the former Selves and on the former Worlds. The experience of the World and of the Self has modal layers.
The Self and its World progress as a dual system through space-time by an anabolism of indefiniteness into form and form into indefiniteness.

The World is generated and regenerated through the life history of the system. Its trajectory in physical spacetime can be visualized as a swath of possibility within the field of indefiniteness. In semantic spacetime, one can conceive of the history of the World as the anabolism of indefiniteness into form and of form into indefiniteness through a sequence of modal transformations. See Figure 1.

Figure 1. A Swath of Possibility.
(The Modal Status of an Actor’s Epistemic Experience).

The Self is generated and regenerated through the life history of the system. Its trajectory in physical spacetime can be visualized as a swath of relevance within the field of meaninglessness. In semantic spacetime, one can conceive of the history of the Self as the anabolism of meaninglessness into meaning and of meaning into meaninglessness through a sequence of modal transformations. See Figure 2.
4.2 EPHEMERAL ISLANDS OF EXPERIENCE

In my thinking about experience and action, I have tried to distinguish between things and systems. It seemed to me that not merely for humans and other social things, but for all things as well, a double interpretation of things as objects and subjects is not only possible but, in the present state of our knowledge, if not necessary, then at least advantageous. Such interpretation can be further performed under various metaphors, a quaternion of which seemed to offer itself. Under the metaphor ‘mind’ I constructed scaffolding for a theory of Action.

I visualize metabolic Selves and their Worlds in autopoietic and symbiotic development in semantic space-time as ephemeral swaths of experience in a boundless sea of meaninglessness.30

Occasionally fragments of the picture that I made for myself have been published; other segments are ‘in progress’ or in detailed outline and can be downloaded from my web site.

5 PREVIOUSLY PUBLISHED DETAILS

1962b2. Ch. II: The conceptual scheme.

1965a. Self-control in a sociological perspective.

1 Kouřímská 24, CZ - 284 01 Kutná Hora, Czech Republic; Tel: +420 327 512-197 E-mail: Richard.Jung@post.harvard.edu; URL: www.richardjung.cz.

2 Including notably St. Augustine, Duns Scotus, Descartes, Spinoza, George Henry Lewes and Moritz Schlick; Gottlob Frege, Bertrand Russel and Rudolph Carnap; William James, Franz Brentano, Sigmund Freud, Martin Heidegger and Talcott Parsons.

3 As well as to see the action that lies in inaction and the inaction that lies in action (Bhagavad Gita).

4 Karel Engliš (1880 – 1961) partitioned thought into causal, teleological and normological. Teleology he regarded as a foundation for economic decisions as conceived by the Austrian school.

5 Much of Felix Geyer’s intellectual and organizational efforts over many years have been devoted toward establishing Sociocybernetics as a coherent academic discipline, with a well defined problem area, history, collegium, meetings, publication and ties to other scientific, scholarly and academic institution. In this he has been to an extraordinary extent successful. I for one have benefited from his accomplishments and extend him here my thanks.

I have first presented my conception of experience and action as 1962 as “Formal analysis of ideological components of behavior” at the Annual meeting of the American Association for the Advancement of Science in Philadelphia PA. A full blown conception I then presented in 1964 as “The theory of orientation as a special theory of action” at Lazarsfeld’s Columbia University Seminar on Contents and Methods of the Social Sciences, New York NY.

A conception of the Special Theory of Motivation I first presented in 1962 as “Self-control in a sociological perspective” at the Conference on Self-Control under Stressful Conditions in Washington DC and a conception of the Special Theory of Decision in 1965 at the Airlie House Conference on Social Conflict in Warrenton VA.

For the initial formulation of the operators see Jung, 1965b or www.richardjung.cz/rep65b.pdf, Figures 1-3 and Table 3. For the most recent revision, cf. www.richardjung.cz/tab7a3.pdf, Figure 1c and Tables 2a-c.

For an outline of System and Significance see www.richardjung.cz/Work_in_Progress.pdf.

Imagine, if you please, that such autopoiesis of a boundary occurs during the development of a mammalian embryo, when the ectoderm emerges. The ectoderm transforms into various tissues, particularly the skin and the nervous system.
